Statistical Model Checking: An Overview
نویسندگان
چکیده
Quantitative properties of stochastic systems are usually specified in logics that allow one to compare the measure of executions satisfying certain temporal properties with thresholds. The model checking problem for stochastic systems with respect to such logics is typically solved by a numerical approach [31,8,35,22,21,5] that iteratively computes (or approximates) the exact measure of paths satisfying relevant subformulas; the algorithms themselves depend on the class of systems being analyzed as well as the logic used for specifying the properties. Another approach to solve the model checking problem is to simulate the system for finitely many executions, and use hypothesis testing to infer whether the samples provide a statistical evidence for the satisfaction or violation of the specification. In this tutorial, we survey the statistical approach, and outline its main advantages in terms of efficiency, uniformity, and simplicity.
منابع مشابه
Rare Events for Statistical Model Checking an Overview
This invited paper surveys several simulation-based approaches to compute the probability of rare bugs in complex systems. The paper also describes how those techniques can be implemented in the professional toolset Plasma.
متن کاملModel checking in multiple imputation: an overview and case study
BACKGROUND Multiple imputation has become very popular as a general-purpose method for handling missing data. The validity of multiple-imputation-based analyses relies on the use of an appropriate model to impute the missing values. Despite the widespread use of multiple imputation, there are few guidelines available for checking imputation models. ANALYSIS In this paper, we provide an overvi...
متن کاملController Dependability Analysis by Probabilistic Model Checking
We demonstrate how probabilistic model checking, a formal verification method for the analysis of systems which exhibit stochastic behaviour, can be applied to the study of dependability properties of software-based control systems. We provide an overview of these techniques and of the probabilistic model checking tool PRISM, illustrating the usefulness of the approach through a small case stud...
متن کاملStochastic Model Checking
This tutorial presents an overview of model checking for both discrete and continuous-time Markov chains (DTMCs and CTMCs). Model checking algorithms are given for verifying DTMCs and CTMCs against specifications written in probabilistic extensions of temporal logic, including quantitative properties with rewards. Example properties include the probability that a fault occurs and the expected n...
متن کاملProbabilistic model checking in practice: Case studies with PRISM1
In this paper, we describe some practical applications of probabilistic model checking, a technique for the formal analysis of systems which exhibit stochastic behaviour. We give an overview of a selection of case studies carried out using the probabilistic model checking tool PRISM, demonstrating the wide range of application domains to which these methods are applicable. We also illustrate se...
متن کاملAn Overview of the New Feature Selection Methods in Finite Mixture of Regression Models
Variable (feature) selection has attracted much attention in contemporary statistical learning and recent scientific research. This is mainly due to the rapid advancement in modern technology that allows scientists to collect data of unprecedented size and complexity. One type of statistical problem in such applications is concerned with modeling an output variable as a function of a sma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010